전북 서남권 해상풍력 시범단지 건설사업 환 경 영 향 평 가 서

- 초 안 요 약 서 -

2021. 09

1 사업의 개요

가. 사업의 배경 및 목적

- 세계 각국은 해상풍력을 에너지 고갈 위험에 대한 능동적인 대처와 온실가스 감축, 일자리 창출의 핵심수단으로 인식하고 치열한 시장선점 경쟁이 전개되고 있음.
- 또한, 해상풍력은 육상풍력보다 확장성이 풍부하며, 연관산업 유발효과가 큰 해상풍력 발전시장의 급팽창이 예상되어 주요국은 해상풍력을 미래 성장동력으로 인식하고 단지 건설·운영을통하여 시장창출과 경제성 확보 중임.
- 따라서, 정부는 국가 신성장동력 산업창출을 위하여 2011년 11월 11일에 범국가 차원의 해상 풍력 종합 추진계획인「서남해 2.5GW 해상풍력 종합추진계획」을 발표하였으며, 국내 최초 대규모 해상풍력발전단지 개발사업을 위한 서남해 해상풍력 실증단지를 건설하였음.
- 현재 운영중인 서남해 해상풍력 실증단지의 연계선상에서 추진되는 시범단지 조성사업은, 그간 국내 해상풍력사업 추진시 장해요소였던 주민수용성 확보를 위하여 국내 최초로 주민·지자체가 주도 하는 민관협의체 운영을 거쳐 추진되는 사업으로, 정부의 '그린뉴딜 및 해상풍력 비전 선포식'의 가시적인 성과를 위하여 신속한 추진이 요구되고 있는 실정임.

나. 사업의 추진경위 및 향후계획

1) 추진경위

- 2010. 11 : 서남해 2.5GW 해상풍력 추진 로드맵 발표
- 2011. 11 : 종합추진계획(정부) 및 개발협약
- 2012. 12 ~ 2020. 01 : 서남해 해상풍력 60MW급 실증사업* 시행
 - * 17년 5월 공사착공 및 19년 11월 공사준공
- · 2013. 02. 25 : 제6차 전력수급기본계획 반영(지식경제부 공고 제2013-63호)
- ∘ 2019. 07 : 전북 "서남권 해상풍력 민관협의회" 출범
- 2020. 05 : 서남해 해상풍력 2.4GW(시범·확산) 추진 결정
- 2020. 07 : "전북 서남권 해상풍력' 추진 업무협약"* 체결
 - * '그린뉴딜 및 해상풍력 비전 선포식'에서 주민상생형 해상풍력 업무협약 체결
 - → 민관협의회 합의 및 업무협약상 **한국해상풍력의 시범사업 400MW 추진 합의**
- 2020. 10 : 민관협의회 시범단지 사업해역 위치 및 사업자 결정
- 2020. 11. 02 : 발전사업 허가신청 공고(~16일)
 - → 전라일보 제2면, 전북일보 제11면
- ∘ 2021. 01. 29 : 전기사업 허가(제249차 전기위원회)
- 2021. 02. 16 : 환경영향평가협의회 위원 위촉 및 서면심의 요청(산업통상자원부 재생에너지 산업과-236호)
 - 심의기간 : 2021.02.16. ~ 2021.03.15.

- 2021. 04. 27 : 환경영향평가 평가준비서 심의결과 통보(산업통상자원부 재생에너지산업과-620호)
- 2021, 05, 04 : 환경영향평가 평가항목·범위 등의 결정내용 공개(부안군 공고 제2021-734호)
 - 공개기간 : 21.05.04. ~ 21.05.17(14일간)
- 2021. 09. 24 : 환경영향평가서 초안 공람 공고(부안군 공고 제2021-1430호)

2) 향후계획

- ∘ 주민의견 수렴(주민등의 의견 수렴 결과 반영여부 공개 : 14일 이상)
- 전원개발사업 실시계획 승인신청(환경영향평가 협의요청)
- ∘ 중앙행정기관 협의 및 지자체 의견조회(의제사항 및 환경영향평가 협의)
- 전원개발추진위원회 심의
- 실시계획 승인고시(의제사항 신고)
- 발전설비 공사계획인가
- ∘ 공사착공

다. 환경영향평가 실시근거

• 서남권 해상풍력 시범단지의 발전용량 400MW는 「환경영향평가법」제22조 및 같은 법 시행령 31조 [별표3]의 "3.에너지개발사업" 중 「전원개발촉진법」제2조제2호에 따른 풍력발전소의 발전시설용량 10만 킬로와트(= 100메가와트) 이상에 해당되므로 환경영향평가 대상사업임.

표 1-1 환경영향평가 실시근거

구 분	환경영향평가대상사업의 종류 및 범위	협의 요청시기
3. 에너지 개발사업	다. 「전원개발촉진법」 제2조제2호에 따른 전원개발사업 중다음의 어느 하나에 해당하는 시설에 관한 사업 1) 발전시설용량이 1만 킬로와트 이상인 발전소. 다만, 댐및 저수지 건설을 수반하는 발전소의 경우에는 발전시설용량이 3천 킬로와트 이상인 것, 태양력·풍력 또는 연료전지발전소의 경우에는 발전시설용량이 10만 킬로와트 이상인 것, 발전소의 냉각수를 활용한 해양소수력 발전소의 경우에는 발전시설용량이 3만 킬로와트 이상인 것 2) 345킬로볼트 이상의 지상송전선로로서 선로길이(실시계획에 지중화구간이 포함된 경우 그 길이를 포함한다)가 10킬로미터 이상인 것 3) 765킬로볼트 이상의 옥외변전소	
사업규모별 대상사업 검토	 중력발전소: 400MW (40만KW) > 10만KW 이상 ⇒ 환경 송전선로: 해저케이블 ⇒ 환경영향평가 미대상 변전소: 해상변전소(345kV) ⇒ 환경영향평가 미대상 	병영향평가 대상

자료 : 「환경영향평가법 시행령」 제31조제2항 및 제47조제2항 관련[별표 3]

라. 사업의 내용

• 사업명 : 전북 서남권 해상풍력 시범단지 발전사업

• 사업위치 : 전라북도 부안군 위도 남측 해상 인근 해역

• 사업기간

- 건설(2.5년) : 2024년 06월 ~ 2026년 12월

- 운영(20년) : 2027년 01월 ~ 2047년 01월(상업운전 개시 후 20년)

∘ 사업시행자 : 한국해상풍력(주)

• 승인기관 : 산업통상자원부

• 협의기관 : 환경부

◦ 사업비 : 2,400,000백만원

◦ 사업규모

- 발전용량 : 400MW(8MW/기 × 50기)

- 해상변전소, 육·해상 송전선로 등

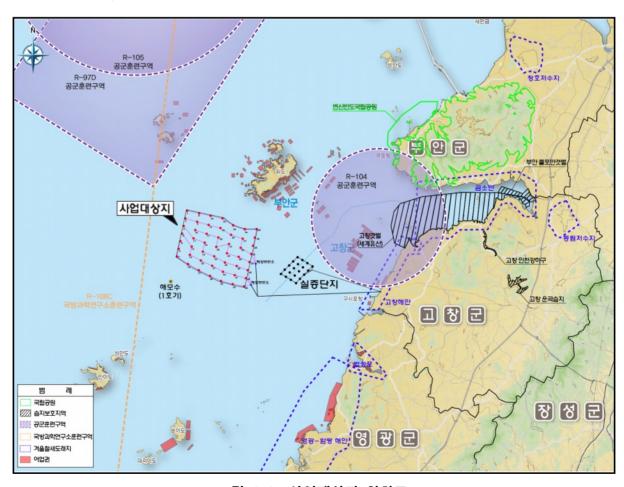


그림 1-1 사업대상지 위치도

2 환경영향평가 대상지역 및 평가항목의 설정

- 본 사업의 공사단계에서 주변 환경에 미치는 주요 영향요소로는 풍력발전기 항타시 소음발생, 해저케이블 매설을 위한 굴착 시 부유물질 확산, 공사장비 및 작업선박 가동에 의한 각종 폐기물과 대기오염물질 발생, 해양사고 발생시 유류유출 등이 있음.
- 한편, 운영단계에서는 풍력발전기 주변으로 침퇴적현상 발생, 해저케이블에서 발생되는 전자기 장으로 어류 등에 영향, 풍력발전기 회전 시 소음발생, 해상구조물 설치로 인한 조류충돌 및 해양경관변화 등이 주요 영향요소로 예상됨.
- 따라서, 사업의 특성과 입지특성 등을 고려하고, 평가항목별 영향요인을 분석하여 항목별 평가 대상지역을 다음과 같이 설정함.

표 2-1 환경영향평가 대상지역의 설정

н ог	펀기하다	평가대상 지역		н д
분 야	평가항목	공 간 적	시 간 적	비 고
	육 상	·풍력발전기 반경 : 20.0km	공사시,	조류 포함
	동·식물상		운영시	-11 -1
자 연	해 양	 ∘풍력발전기 반경 : 20.0km	공사시,	_
생태환경	동·식물상		운영시	
	자 연 환경자산	·사업대상지 및 주변 지역	공사시	_
	기 상	○사업대상지 및 주변 지역	공사시,	_
	71 6	·사립웨6시 및 1년 시크	운영시	
대기환경 대기환경	 대 기 질	│ ∘풍력발전기 반경 : 20.0km	공사시,	누적평가 고려
11/12.0	게 기 근	872E7 E8 · 20.0km	운영시	1 40/1 ±4
	온실가스	공사시, ○풍력발전기 반경 : 20.0km	누적평가 고려	
		0 122 1 20 20.0	운영시 운영시	1 10 1 - 1
 수 환경	해양환경	│ ▷풍력발전기 반경 : 20.0km	공사시,	 누적평가 고려
			운영시	
	토지이용	∘사업대상지 및 주변 지역	운영시	_
토지환경	토 양	∘사업대상지 및 주변 지역	공사시	_
	지형·지질	∘사업대상지 및 주변 지역	운영시	_
	친환경적	·사업대상지 및 주변 지역 운영시	공사시,	
	자원순환		운영시	_
생활환경	소음·진동	∘풍력발전기 반경 : 5.0km 공사시 운영시	영향예측범위	
	<u> </u>		운영시	68에 누릅피
	위락 및 경관	∘사업대상지 및 주변 지역	운영시	_
	전파장해	·사업대상지 및 주변 지역	운영시	_
사회·경제	산 업	○사업대상지 및 주변 지역	공사시	_
환 경	[건 년	*시답네당시 중 T단 시국	운영시	_

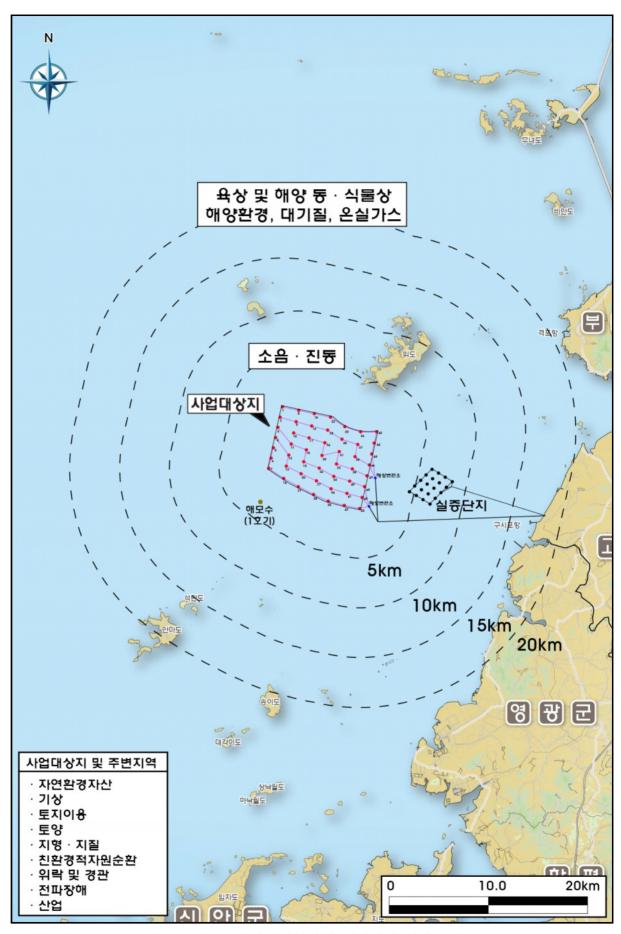


그림 2-1 환경영향평가 대상지역 설정도

3 환경현황 조사·예측·분석 및 저감방안

가. 자연생태환경분야

1) 육상동·식물상

• 육상식물상

- 양치식물 : 4과 4속 3종 1변종. 총 4분류군

- 나자식물 : 3과 5속 7종, 총 7분류군

- 피자식물 : 71과 174속 201종 25변종, 총 230분류군

- 현지조사 시 산림청지정 희귀식물 4종 출현

- 현지조사 시 환경부 지정 멸종위기 야생식물, 보호수 및 노거수 미출현

• 육상동물상

- 포유류 : 4목 8과 14종, 법정보호종(수달, 삵)

- 양서·파충류 : 3목 9과 17종, 법정보호종(표범장지뱀)- 육상곤충류 : 13목 85과 253종, 법정보호종 미출현

。 육수동물상

- 어류: 4목 6과 9종, 법정보호종 미출현

- 저서성무척추동물 : 3문 5강 11목 23과 30종, 법정보호종 미출현

。 조류

- 법정보호종 총 5종 출현

(바다쇠오리, 검은머리물떼새, 알락꼬리마도요, 저어새, 노랑부리백로)

- ∘ 육상 동·식물상, 육수동물상에 대한 영향
- 사업 특성상 조사지역과 이격된 해상에서 실시하는 사업으로 육상 동·식물상과 육수동물상에 미치는 영향은 미미할 것으로 예상됨.
- 현지조사시 확인된 법정보호종들은 육지와 상당거리 이격된 해상부에 해상풍력 발전기를 설치하는 것으로 공사시 오염물질, 소음·진동 등으로 인한 영향은 미미할 것으로 판단됨.
- 조류에 대한 영향
 - 풍력발전단지 조성 시 조류는 주·야간 회피거리 판단 여부, 풍력발전기 우회로 인한 이동패턴 변화, 에너지 소모 증가 등 잠재적으로 영향을 받을 수 있음.
 - 바다오리, 갈매기류 등과 같이 일부 해양성 조류들은 풍력발전기의 회피율이 매우 높은 것으로 보고되나, 그 외 조류들의 풍력발전기 회피 능력은 불확실함.

현 황

영향예측

저감방안

- 연안부 공사시 토공작업의 단기간 집중투입 지양, 단계별 공정계획 수립, 서식처
 및 먹이원의 훼손 최소화
- 해상에서 이동하는 조류가 시설물을 인지할 수 있도록 필요시 빛을 내거나 점멸등같은 장치(LED 또는 항공기 충돌방지등 등) 설치
- 타워나 블레이드의 일부를 고명도로 색채하거나 UV코팅젤로 처리하여 조류충돌 최소화
- 가급적 우기시 공사를 지양하여 공사시 토사의 하천 유입을 방지하여 육수 생태계에 미치는 영향 최소화

2) 해양동·식물상

• 식물플랑크톤 - 출현종수 : 표층 50~56종, 저층 51종 - 평균 현존량 : 표층 200,053~409,548cells/L, 저층 204,868~434,305cells/L - Chl-a : 표층 0.00~4.82μg/L, 저층 0.02~5.60μg/L - 우점종 : Cryptomonads, *Meuniera membranacea, Skeletonema* spp. 등 。 동물플랑크톤 - 출현종수 : 29~36종 - 평균 출현량 : 1,467~3,875개체/m³ - 우점종 : Noctiluca scintillans, Acartia omorii, Acartia hongi 등 • 어란 및 자치어 - 어란 0~2종, 평균 출현량 0~288개체/1,000㎡, 우점종 : 미동정 어란 - 자치어 2~4종, 평균 출현량 9~44개체/1,000㎡, 우점종 : 까나리, 학꽁치 현 황 • 경성조간대 저서동물 - 출현종수 28~34종, 평균 서식밀도 1,792~1,904개체/m², 우점종 : 조무래기따개비 • 경성조간대 해조류 - 출현종수 20~23종, 평균 생물량 63.08~135.40gwwt./m², 우점종 : 지충이 • 연성조간대 저서동물 - 출현종수 66종, 평균 서식밀도 1,884개체/㎡, 우점종 : 모래무지옆새우류 • 조하대 저서동물 - 출현종수 112~142종, 평균 서식밀도 748~1,240개체/m², 우점종 : 다모류, 단각류 • 어류 및 수산자원 - 출현종수 2~23종, 개체수 2~237개체, 우점종 : 갯가재, 양태류, 갑오징어류 • 보호종 - 출현종 : 싱괭이, 흰발농게, 비디쇠오리, 검은머리물떼새, 알락꼬리미도요, 저어새, 노랑부리백로 ○ 부유물질 발생에 의한 영향 : 수중 광입시량 감소, 광합성 제한, 수중동물 아기미 흡착 등 • 어업권에 미치는 영향 : 인근 양식장에 영향을 미칠 것으로 예측됨 ◦ 침·퇴적 변화에 의한 영향 : 저서동물 서식지 영향 • 해저지형 훼손으로 인한 영향 : 고착성 생물 및 민감한 종에 영향 영향예측 · 소음·진동에 의한 영향 : 해양포유류 및 어류에 일시적인 청각손상 어병에 대한 저항성 악화 및 생리적 불균형 초래 • 계통연계에 의한 자기장 영향 : 해양포유류 및 어류에 일시적인 청각손상 유류유출시 미치는 영향 : 일차생산력 및 광합성 제한, 산소용해율 감소 등

● 부유사 확산 : 부유사 모니터링, 오탁방지막 설치, 작업중단, 작업시간 단축
 ● 침·퇴적 변화 : 해수소통이 가능한 자켓식 구조물 설치
 저감방안
 ● 수중소음 : 공사인부 교육, 장비 집중투입 방지, 저소음, 저진동 장비 사용, 항타공사시 해머낙하 높이 조절, 항타작업 전 인위적 경고음 발생 등
 ● 유류유출사고 대책수립 : 방재장비 비치

다) 자연환경자산

	· 사업대상지 주변 자연환경자산 현황(이격거리)
	- 환경보전해역 : 남측 약 23.8km
	- 해양보호구역 : 동측 약 19.9km
	- 특정도서 : 북측 약 5.7km
	- 자연환경보전지역 : 남동측 약 19.6km
	- 무인도서 : 북측 약 5.4km
	- 습지보호지역 : 동측 약 19.9km
_1 - 1	- 야생생물보호구역 : 북동측 약 31.9km
현 황 	- 자연공원 : 북동측 약 23.9km
	- 지질공원 : 북측 약 5.1km
	- 보호물 또는 보호구역 : 북동측 약 10.2km
	- 천연기념물 : 남측 약 14.0km
	- 상수원보호구역 : 남동측 약 20.3km
	- 산림유전자원보호구역 : 남측 약 20.0km
	- 철새도래지 : 남동측 약 16.8km
	- 해양생태도 : 2~3등급, 등급외 지역 위치
영향예측	• 최인접한 자연환경자산은 '전북서해안권 국가지질공원'으로 지정된 위도임.
	· 사업대상지로부터 해상 직선거리 5.1km 이격되어 있어, 영향은 미미할 것으로
	판단됨.
저감방안	◦ 별도 육상 공사 계획이 없으므로, 주변 자연환경자산에 미치는 영향은 미미

2) 대기환경분야

가) 기상

	· 부안기상대의 최근 10년간(2011~2020년) 연평균 기상개황
	- 평균기온 : 13.19℃ - 평균풍속 : 1.72m/s
	- 평균습도 : 72.29% - 강수량 : 1,213.67mm
	- 일조시간 : 2,160.51hr
	∘ 고창기상대의 최근 10년간(2011~2020년) 연평균 기상개황
∸l 5 l	- 평균기온 : 13.23℃ - 평균풍속 : 2.63m/s
현 황	- 평균습도 : 78.89% - 강수량 : 1,223.72mm
	- 일조시간 : 2,159.95hr
	∘ 영광군기상대의 최근 8년간(2013~2020년) 연평균 기상개황
	- 평균기온 : 13.23℃ - 평균풍속 : 2.13m/s
	- 평균습도 : 74.33% - 강수량 : 1,252.21mm
	- 일조시간 : 2,411.79hr
영향예측	◦ 기상변화 없음
저감방안	-

나) 대기질

	∘ 현지조사		
	- PM-2.5 : 9~14μg/m³	- CO: 0.1~0.4ppm	
취 형	- PM-10 : 10~28μg/m³	- O ₃ : 0.004~0.047ppm	
현 황	- SO ₂ : 불검출	- 벤젠 : 불검출	
	- NO ₂ : 0.012~0.032ppm	- Pb : $0.001 \sim 0.007 \mu g/m^3$	
	- 전 항목이 전 지점에서 대기	환경기준을 만족	
	∘ 공사시 대기질 예측(24시간 기	[준)	
	- PM-2.5 : 12.012~14.003µ	g/m³	
영향예측	- PM-10 : 23.013~28.004μg/m³		
	- NO ₂ : 20.002~32.006ppb		
	- 전 지점에서 대기환경기준 만족		
	∘ 공사시		
저감방안	- 공사장비 적정 운용계획		
	- 운항속도 감속조치		

다) 온실가스

	· 국가 온실가스 배출(분야별)
-, -,	- 2018년 배출량 기준 에너지, 산업공정, 농업 순으로 배출량이 많음.
<u>현</u> 황	· 국가 온실가스 배출(온실가스별)
	- 2018년 배출량 기준 CO ₂ , CH ₄ , N ₂ O 순으로 배출량이 많음
영향예측	∘ 공사시 장비투입에 의한 온실가스 배출량 : 4.47 tCO₂eq/일
	∘ 공사장비 적정 운용 및 보수
저감방안	· 운항속도 감속조치
	· 풍력발전기 운영을 통한 온실가스 저감효과에 기여

3) 수환경분야

가) 해양물리

	◦ 조석
	- T-1 : 평균해면 323.7~326.1cm, 반일주조가 우세한 혼합형
	- T-2 : 평균해면 330.2~330.9cm, 반일주조가 우세한 혼합형
	- T-3 : 평균해면 341.4~344.7cm, 반일주조가 우세한 혼합형
	◦ 조류
현 황	- PC-1 : 최강유속 70.5~114.9cm/s
	- PC-2 : 최강유속 84.8~146.9cm/s
	- PC-3 : 최강유속 76.7~117.5cm/s
	◦ 조류
	- ST-1 : 최대파고 및 유의파고는 0.5m 미만이 우세
	- ST-2 : 최대파고 및 유의파고는 0.5m 미만이 우세
	∘ 최대유속변화는 표층과 저층에서 각각 -80.9~10.9cm/s, -60.7~6.6cm/s로
영향예측	구조물 주변으로 국한되어 발생함.
	∘ 최대파고는 2.0~3.5m의 분포로 예측되었으며, 유의파고 변화율은 구조물 주변
	으로 국한되어 발생함.
저감방안	-

나) 해양수질 및 퇴적물

현 황	- 전 항목 ∘ 해양저질 - 입도분석	해양생태 덕 결과 평	^독 , 생태기반 해수수질 [*] 계 보호 단기기준 및 Δ 균입경 0.63~1.87Φ 및 관리기준 모두 만족	사람의		
	• 부유사확선	산실험				
	1.0mg/L		1.0mg/L 이상 농도 증:	가치	1.0mg/L 이상 농도 증가치 거리 (km)	
	일 :	눸안	면적(km^2)		기디(북측	사내) 남축
		저감 전	11.3		4.3	4.6
	Case D1	저감 후	9.3		3.7	4.0
		저감 전	5.8		1.9	2.2
	Case D2	저감 후	4.4		1.5	1.7
		저감 전	4.3		1.5	1.7
	Case D3	저감 후	3.3		1.4	1.3
	0	저감 전	4.9		1.6	1.7
영향예측	Case D4	저감 후	3.6		1.3	1.2
	Case D5	저감 전	2.3		1.2	1.0
	Case D3	저감 후	1.8		0.9	0.9
	Case D6	저감 전	2.4		1.1	1.1
	Case Do	저감 후	1.9		1.0	1.0
	Case D2 3920000-39200000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-39200000-392000000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-3920000-39	Case D2-1 Bottom Layer, unit : mg/l 20 20 20 20 20 20 20 20 20 20 20 20 20	(Godwing Septiment Septi	Case	Distance Y(u	실종단지 Gochang (Gochang (Gochan
저감방안			·확산 저감방안 수립 · 유류유출 방지대책			

4) 토지환경분야

가) 토지이용

	∘ 지목별 토지이용 현황
	- 부안군 : 총면적 493.18㎢ 중 임야 198.00㎢, 답 141.27㎢, 전 52.96㎢
	- 고창군 : 총면적 607.48㎢ 중 임야 261.09㎢, 답 140.65㎢, 전 93.85㎢
	- 영광군 : 총면적 474.96km² 중 임야 206.99km², 답 113.34km², 전 60.41km²
	○ 용도지역현황
	- 부안군 : 총면적 493.68㎢ 중 도시지역 47.74㎢, 비도시지역 445.94㎢
	- 고창군 : 총면적 607.74km² 중 도시지역 32.45km², 비도시지역 575.29km²
-l - l	- 영광군 : 총면적 554.63km² 중 도시지역 47.02km², 비도시지역 507.61km²
현 황	∘ 해안선 및 도서
	- 부안군 : 해안선 길이 173.3km, 도서 35개소
	- 고창군 : 해안선 길이 88.2km, 도서 4개소
	- 영광군 : 해안선 길이 248.7km, 도서 64개소
	· ·
	○ 상위계획 및 관련계획
	- 제5차 국토종합계획, 제2차 연안통합 관리계획 변경계획, 제1차 해양공간 기
	본계획, 제3차 에너지 기본계획, 재생에너지3020 이행계획, 제5차 신·재생에
	너지 기술개발 및 이용·보급 기본계획, 제9차 전력수급기본계획
	· 상위계획 및 관련 계획과의 연계성
영향예측	- 본 사업은 "재생에너지 3020 이행계획"등 상위계획에 부합하는 것으로 판단됨
	· 사업대상지 시설규모 검토
	- 본 사업대상지 내 해상풍력 발전용량은 400MW(8MW/기 × 50기)으로 계획함
저감방안	-

나) 지형지질

	∘ 사업대상지 인근 의 지질 : 대부분 중생태 백악기의 "망령봉응회암(Kwmt)" 지층 ∘ 보존가치가 있는 지형·지질
현 황	- 지형·지질 관련 천연기념물 및 명승 : 해당없음
	- 지형·지질 관련 특정도서 : 7개소
	- 한국의 지질노두 150선, 한국지질자원연구원 : 7개소
영향예측	 사업시행 전·후 해저면 변화양상 예측(침·퇴적 변화) 주요 공정 : 풍력발전기 설치 침·퇴적 수치모형 실험결과 사업시행 후, 해저면의 침·퇴적 변화는 조류의 주 흐름방향인 남서-북동 방향에서 퇴적이, 남동-북서 방향에서 구조물 인근에 침식이 발생하며, 동계와 춘계 모두 구조물 반경 150m 이내로 국한되어 발생하므로 사업대상지 경계 외측에서의 침·퇴적 변화는 미미함.
저감방안	• 해저케이블 보호공법 : 검토 후 최적의 보호공법을 선정할 것임. - Rock Berm - Stone Bag - FCM

다) 토양

현 황	• 현지조사 - Cd : 불검출~0.9mg/kg - Cu : 3.3~50.1mg/kg - As : 3.29~19.10mg/kg - Hg : 불검출~0.23mg/kg - Pb : 12.7~70.3mg/kg - Zn : 35.0~154.6mg/kg - Ni : 3.4~8.8mg/kg - F : 164.0~359.0mg/kg - TPH : 불검출~98.0mg/kg - 전항목에서 토양오염우려기준 및 대책기준을 만족
영향예측	 ● 투입장비에 의한 토양오염 ─ 본 사업은 해상부 공사가 대부분 이루어 질 것으로 본 사업시행에 따른 토양 오염은 없을 것으로 판단됨. ─ 연료·윤활유의 유출 및 엔진오일, 기타 잡유의 교체시 발생되는 폐유 중 일부가 근처로 유출되거나 불법투기 될 경우, 토양오염 발생이 우려됨 ○ 공사시 투입인력에 의한 토양오염 ─ 생활폐기물 발생량 : 12.77kg/일 ─ 분뇨 발생량 : 12.21L/일 ○ 운영시 생활폐기물 분뇨 발생 ─ 생활폐기물 발생량 : 3.36kg/일 ─ 분뇨 발생량 : 3.00L/일
저감방안	○공사시 - 생활폐기물 : 분리수거함 설치, 각 지방자치단체 처리계획 준수 - 분뇨 : 현장 사무실 및 공사현장에 이동식 화장실을 설치 후 전량 위탁처리 - 지정폐기물(폐유) : 각종장비 가동점검 실시, 투입장비에 의한 지정폐기물은 수거 후 위탁처리 ○운영시 - 생활폐기물 : 분리수거함 설치, 각 지방자치단체 처리계획 준수 - 분뇨 : 발생된 분뇨는 전문처리업체에 전량 위탁처리

5) 생활환경분야

가) 친환경적 자원순환

	∘폐기물발생량 및 처리현황
	- 생활폐기물 관리구역 (관리구역내 인구)
	→ 부안군 : 493.18km² (54,150명) → 고창군 : 607.48km² (56,467명)
	→ 영광군 : 462.95㎢ (54,157명)
	- 생활폐기물 발생량
	→ 부안군 : 총 61.1ton/일, (1일 1인당 생활폐기물 발생량 : 1.13kg/인·일)
	→ 고창군 : 총 62.0ton/일, (1일 1인당 생활폐기물 발생량 : 1.10kg/인·일)
	→ 영광군 : 총 37.3ton/일, (1일 1인당 생활폐기물 발생량 : 0.68kg/인·일)
	- 사업장 배출시설계 폐기물 (건설폐기물 발생량)
	→ 부안군 : 70.2ton/일 (436.6ton/일) → 고창군 : 14.2ton/일 (509.5ton/일)
	→ 영광군 : 18.6ton/일 (363.2ton/일)
· 현 황	- 분뇨 발생량
	→ 부안군 : : 60.0㎡/일 (1일 1인당 분뇨 발생량 : 1.11kg/인·일)
	→ 고창군 : : 48.0㎡/일 (1일 1인당 분뇨 발생량 : 0.85kg/인·일)
	→ 영광군 : : 33.9㎡/일 (1일 1인당 분뇨 발생량 : 0.62kg/인·일)
	∘폐기물 처리시설
	- 매립시설
	→ 부안군 : 1개소 → 고창군 : 1개소 → 영광군 : 2개소
	- 소각시설
	→ 부안군 : 1개소 → 영광군 : 2개소
	- 기타처리시설
	→ 고창군 : 3개소
	- 분뇨처리시설
	→ 부안군 : 1개소 → 고창군 : 1개소 → 영광군 : 1개소
	∘공사시 건설장비 및 공사인부에 의한 영향
	- 생활폐기물 발생량 : 12.77kg/일
	- 분뇨 발생량 : 12.21L/일
영향예측	∘공사장비 운용에 의한 폐유 발생량 : 74.1L/일
	○운영시 생활폐기물 분뇨 발생
	- 생활폐기물 발생량 : 3.36kg/일
	- 분뇨 발생량 : 3.00L/일
	∘공사시
저감방안	- 생활폐기물 : 분리수거함 설치, 각 지방자치단체 처리계획 준수
	- 분뇨 : 현장 사무실 및 공사현장에 이동식 화장실을 설치 후 전량 위탁처리
	- 지정폐기물(폐유) : 투입장비에 의한 지정폐기물은 수거 후 위탁처리
	·운영시
	- 생활폐기물 : 분리수거함 설치, 각 지방자치단체 처리계획 준수
	- 분뇨 : 발생된 분뇨는 전문처리업체에 전량 위탁처리

나) 소음 진동

∘소음 현황

- 현지 : 낮 평균 45.5~50.9dB(A), 밤 평균 38.3~48.3dB(A)

∘진동 현황

- 현지 : 주간 평균 19.6~21.6dB(V), 심야 평균 13.9~18.9dB(V)

∘저주파 소음 현황

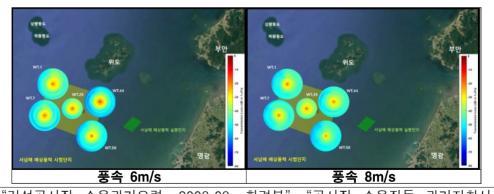
현 황

- 저주파 OVERALL 소음도 : 주간 56.9~60.3岛(G), 야간 47.8~53.1岛(G)

- 사업대상지(해상부) 인근 수중 배경소음 현황
- 춘계조사 시 정점 1, 2, 3, 4, 5, 9에서 딱총새우 신호가 다른 정점과 비교하여 많이 수신되었으나. 동계조사시에는 딱총새우의 신호가 줄어들었음.
- 주요 주파수 대역별 배경소음 준위는 100Hz에서는 92.0~105.6dB, 1,000Hz에서는 76.0~92.0dB, 3,000Hz에서는 62.4~83.7dB의 범위를 보임.
- ∘공사장비별 합성소음도(础(A))

7 5	TL UI DI	투입대수	1대당	합성 이		이격거리(m)별 예측소음도			
공 종	장 비 명	(대/일)	소음도	소음도	50	100	200	300	500
	항타기	1	89.2		76.0	70.7	65.3	62.2	58.2
기초공	기중기선	1	_	89.3					
	예 선	1	72.8						

∘이격거리별 예측소음도(dB(A))


	합 성	이격거리(m)별 예측소음도					소 음	목표기준		
공 종	소음도	30	50	100	150	200	250	300	목표기준	만족거리 (m)
기초공	89.3	80.0	76.0	70.7	67.5	65.3	63.6	62.2	65	207

。공사시 수중소음도 예측결과

영향예측

7.4	기준소음도	영향범위						피해			
구분	(at 1m)	10m	20m	50m	100m	300m	500m	1,000m	2,000m	5,000m	인정 기준
예측소음도 (dB peak)	208	187.0	180.7	172.3	166.0	156.0	151.3	145.0	138.7	130.3	206

· 풍력발전기 가동시 수중소음 예측결과

·"건설공사장 소음관리요령, 2003.09, 환경부", "공사장 소음진동 관리지침서, 2007.02, 환경부"를 준수하여 공사 시행

∘저소음 건설기계 및 적정용량의 기계를 사용

저감방안

◦소음발생 정도가 크거나 집중될 소지가 있을 경우 사전에 지역주민에게 협조요청 ◦공사장비의 집중 투입 방지 및 공사강도 조절 등 공정관리

0/10-1-1 E0 1 E 0/1 × 0/10-1 = 0 000-1

∘공사시 해양포유류 영향을 최소화 하기 위해 사전경고음 발생

∘수중소음댐퍼 설치

∘저소음·저진동 공법 활용

다) 위락 경관

현 황	 사업대상지는 「자연환경보전법」 제28조 및 같은 법 시행령 제20조 [별표 2]에 의거, "대통령령이 정하는 개발사업"에 해당됨에 따라 "개발사업 등에 대한 자연경관 심의지침(환경부예규 제561호), 2015.08.31., 환경부"에 따른 자연경관영향 심의대상 사업임. 유형별 경관자원 현황 자연경관(위도, 하왕등도, 식도 등), 인문경관(위도관아, 수성당 등) 등
영향예측	 해상풍력 발전시설은 주변 경관 및 시각적 조화를 통해 자연환경과 어느 정도 조화를 이룰 것으로 예측되어 근경을 제외한 중·원경 조망지점에서의 경관변화는 미미할 것으로 판단됨. 또한, 해상 풍력발전시설이 가지는 친환경 에너지 생산의 이미지를 통해 해상의 새로운 관광명소가 될 수 있는 가능성을 포함하고 있음.
저감방안	 자연경관과 조화계획 수립 본 사업대상지에 설치예정인 구조물은 설치해역이 해상인 점을 고려하여, 짙은 청색조 등 바다와 조화를 이루는 색채 사용 건축물 외벽은 가능한 자연재료 사용하거나 이에 상응하는 마감조치 최대한 제품자체의 색상을 사용하는 것이 가장 효과적이나, 부득이하게 화학 안료인 페인트 사용 시 자극적인 색상은 최대한 배제하고 무채색의 고명도 색채를 사용 항로표지 기능 및 해양사고 방지 개별 풍력발전기에 노란색으로 도색하여 풍력발전단지의 항로표지로 운영

라) 전파장해

현 황	∘ 전력사용량 - 부안군 496,662MWh, 고창군 616,279MWh, 영광군 975,012MWh
영향예측	∘ 해상풍력단지 수중 전자기장 측정치와 무영향관찰수준(NOEL) 비교시 0.0007~ 0.2767% 수준으로 무영향관찰수준을 크게 하회하는 것으로 조사되어 운영시 전 자기장으로 인한 영향은 미미할 것으로 판단됨.
저감방안	 본 사업 운영시 해상 송전선로로 인한 전자파에 의한 영향은 미미할 것으로 예 상되며, 지중송전선로 설치 및 절연케이블(XLPE)를 사용으로 전자파의 영향을 최 소화 하겠음.

6) 사회 경제환경 분야

가) 산업

	∘산업별 종사자수 및 사업체 현황 - 부안군 : 산업체수 총 4,902개소. 종사자수 20,456명
	- 고창군 : 산업체수 총 5,502개소, 종사자수 20,542명
	- 영광군 : 산업체수 총 4,772개소, 종사자수 20,610명
	·농업 현황
	- 부안군 : 농가인구 13,729명, 농가수 7,021호
	- 고창군 : 농가인구 16,554명, 농가수 8,277호 - 영관군 : 농가인구 12,412명, 농가수 5,681호
	·광업 및 제조업 현황
	- 부안군 : 사업체수 57개소, 종사자수 2,067명
현 황	- 고창군 : 사업체수 56개소, 종사자수 1,294명
	- 영광군 : 사업체수 29개소, 종사자수 609명
	·산업단지 현황
	- 부안군 : 일반단지 1개소, 농공단지 4개소
	- 고창군 : 일반단지 1개소, 농공단지 4개소
	- 영광군 : 일반단지 1개소, 농공단지 5개소
	·수산업 현황
	- 부안군 : 어가수 총 1,815가구, 어가인구 4,173명, 사업대상지 인근 어업권 135건
	- 고창군 : 어가수 총 366가구, 어가인구 896명, 사업대상지 인근 어업권 53건
	- 영광군 : 어가수 총 3,384가구, 어가인구 7,106명, 사업대상지 인근 어업권 33건
	 사업 시행에 따른 기초굴착 및 준설로 인한 부유사 발생이 불가피할 것으로 판단됨.
영향예측	· 공사시 부유사 최대 확산 범위를 검토한 결과, 사업대상지 인근 어업권에
	영향을 미칠 것으로 예상됨.
	· 오탁방지막 설치 및 필터매트 포설
저감방안	∘ 육안 모니터링 및 공사시기 조절
	· 유류유출사고 방재대책 수립

4 주민의 생활환경, 재산상의 환경오염 피해 및 대책

- 현재 운영중인 서남해 해상풍력 실증단지의 연계선상에서 추진되는 시범단지 조성사업은, 그간 국내 해상풍력사업 추진시 장해요소였던 주민수용성 확보를 위하여 국내 최초로 주민·지자체가 주도 하는 민관협의체 운영을 거쳐 추진되는 사업으로, 정부의 '그린뉴딜 및 해상풍력 비전 선포식'의 가시적인 성과를 위하여 신속한 추진이 요구되고 있는 사업임.
- 따라서, 환경영향평가는 에너지 고갈 위험에 대한 능동적인 대처와 온실가스 감축, 일자리 창출을 위해 시행하며, 공사 및 운영단계에서 부유물질의 확산에 의한 영향과 대기오염물질, 폐기물, 소음·진동 등의 발생으로 생활건강상 영향에 대한 법적·기술적 저감대책을 수립하여 주민의 생활건강상 영향을 최소화 할 계획임.

표 4-1 주민의 생활환경, 재산상의 환경오염 피해 및 저감대책

항	목	피 해 내 용 (저감대책 시행 전)	저 감 대 책	저감대책 시행 후
	육상 동·식물상	조류의 충돌, 서식지교란		·조류와 터빈의 충돌 최소화 ·조류를 주변지역으로 안전 하게 유도
자연 생태 환경	해양 동·식물상	○부유물질 발생에 따른 해양동·식물상 및 인근 양식장, 어장에 부유사 노출 발생 ○유류오염으로 인한 전반 적인 해양생물에 영향 발생	○주기적 모니터링 실시 ○해상사고 대비 유류유출 방지대책 수립	∘해양동·식물상 영향범위 감소
	자연환경 자산	·본 사업은 해상부 공사가 대부분이므로 사업시행시 육상부에서 관찰된 법정 보호종에 미치는 영향은 미미할 것으로 예상	_	_
대기 환경	기상	○본 사업시행시 풍력발전기 설치에 따른 기상의 미세한 변화가 예상되나 변화 정도가 경미하여 사업 대상지 및 주변지역에 미치는 영향은 미미할 것으로 예상		_
.i.	대기질	·공사장비 가동에 따른 대기오염물질의 발생	○공사장비 적정 운용계획 수립 ○해당 구조물을 육상에서 조립 후 해상으로 이송 하여 투하	

표 4-1 표 계속

항	목	피 해 내 용 (저감대책 시행 전)	저 감 대 책	저감대책 시행 후		
대기 환경	온실가스	∘공사시 장비투입에 따른 온실가스(CO₂, CH₄, N₂O) 발생	○공사장비 적정 운용계획 수립 ○효율적인 작업공정을 수립 하여 장비의 이동 동선 및 운영을 최소화	·온실가스 발생량 최소화		
수 환경	해양환경 (해양물리, 해양수질, 해양퇴적물)	∘부유물질 발생에 의한 주변 환경에 대한 영향 발생	∘부유사 육안모니터링 실시	·지속적인 증가시 추가적인		
	토지이용	·본 사업대상지는 해상에 위치하는 바, 토지이용계획 변화는 미미할 것으로 예상	_	-		
토지 환경	토양	토양오염 발생	○누유가 발생하지 않도록 각종장비 가동점검 실시 ○투입인원에 대한 사전 교육실시 ○폐유 및 분뇨 위탁처리 ○분리수거함 설치			
	지형·지질	·본 사업시행에 따른 침· 퇴적 실험 결과, 구조물 반경 150m 이내로 국한 되어 발생하여 사업지구 외부에서의 침·퇴적 변화는 미미할 것으로 예상	_	-		
생활 환경	친환경적 자원순환		○발생폐기물별 관련 규정 및 법규에 의한 시설설치 및 처리 ○분뇨오염방지시설설치 ○폐유 위탁처리			

표 4-1 계 속

항	목	피 해 내 용 (저감대책 시행 전)	저 감 대 책	저감대책 시행 후
	소음·진동	소음·진동 발생 ·항타 및 풍력기 가동에	○건설공시장 소음관리요령에 의한 공사시행 ○주간작업 실시 ○수중소음 댐퍼 ○저소음·저진동 공법	∘환경기준 만족
생활 환경	위락 및 경관	∘인공 구조물 조성으로 인한 경관변화	○주변 경관과의 조화로움을 고려하여 조성 ·시설물 색채 계획수립 ·구조물 도색을 통한 항로 표지	∘경관적 이질감 개선 ∘해양사고 방지
	전파장해	∘본 사업 운영시 해상 송전선로로 인한 전자파에 의한 영향은 미미할 것 으로 예상	-	-
사회·경제 환경	산업	·공사시 발생되는 부유사에 의한 사업지구 인근 어업권 영향 발생	· 오탁방지막 설치	·어업권 영향범위 감소

5 사후환경영향조사계획

○ 본 사업시행으로 인하여 환경상의 영향이 예상되는 사업대상지 및 주변지역을 대상으로 사업시행 전·후의 환경변화에 대한 저감대책을 수립·제시하였는바, 이러한 저감대책과 관련하여 환경 영향 예측결과와의 일치여부와 공사시 예상치 못한 악영향이 발생될 경우 환경영향에 대한 적절한 추가조사를 취할 수 있도록 하고, 환경변화에 따른 대책수립시 자료로 활용함을 목적으로 사후환경영향조사계획을 수립하여 시행할 계획임.

표 5-1 사후환경영향조사계획

=	구 .	분	조사항목	조사지점	조사주기	조사방법
	육상 동·식물상	공사시	○육상동·식물상(조류포함)현황조사 ○법정보호종 서식·출현 및 변화여부		분기 1회	현지조사 (목시조사)
		운영시	○철새 및 우점종, 법정보호종 등의 서식·출현여부 ○조류의 이동고도 조사 및 회피율 조사 ○풍력발전단지 및 주변지역 조류의 이동패턴 조사(12개체 GPS 부착)	∘육상동식물상 : 6권역 ∘육상조류 : 1~5권역	분기 1회	현지조사 (목시조사)
		공사시	○식물플랑크톤(표·저층) ○동물플랑크톤 ○조하대 저서동물 ○어란 및 자치어	30개 정점		
해 동·식		및 운영시	·조간대 저서생물 (해조류 포함)	1개 지선	분기 1회	현지조사
			∘어류 및 수산자원	13개 정점		
			∘해양보호생물	사업대상지 주변 해역		
대기	' 질	공사시	∘저감방안 적정 시행여부	사업대상지 주변지역	분기 1회	대기오염공정 시험기준 및 현지조사
		공사시	·조석, 연속층별조류, 연속부유사	3지점		해양환경공정
해양 화겨	해양 모 리	및	∘파랑	2지점	반기 1회	애왕완경공정 시험기준 및
1.0	환경 물리	운영시	·공간부유사	60지점		현지조사

표 5-1 표 계속

	구	분	조사항목	조사지점	조사주기	조사방법
해양 환경	해양	공사시 및 운영시	NO ₂ -N, NO ₃ -N), DIP(PO ₄ -P),	30개 정점 (표·저층)	분기 1회	해양환경공정 시험기준 및 현지조사
	해양 퇴적물	공사시 및 운영시	○환경현황조사항목 -입도, 함수율, 강열감량, 총유기탄소(TOC), 화학적 산소요구량(COD), 산휘발성 황화물(AVS), 시안(CN), Cd, Cr, Cu, Zn, Pb, Ni, Li, Al, Fe, As, Hg	30개 정점	분기 1회	해양환경공정 시험기준 및 현지조사
	: O‡ - O	공사시	∘토양오염도 현황 - 환경현황조사항목	1지점	분기 1회	토양오염공정 시험기준 및 현지조사
지형	·지질	공사시	·저감대책 적정 시행여부	사업대상지 및 주변지역	반기 1회	현지조사
친환경적 자원순환		공사시 및 운영시	○폐기물 관련 인·허가 사항 여부 ○작업인부에 의한 생활폐기물 및 분뇨의 적정처리 여부 ○건설장비로부터 배출되는 폐유 처리 ○폐기물관리대장	사업대상지 및 주변지역	분기 1회	현지조사
수은	·진동	공사시	∘수중소음(항타소음)	12정점	분기 1회	현지조사
上百	<u></u>	운영시	∘수중소음(가동소음)	12정점	분기 1회	현지조사

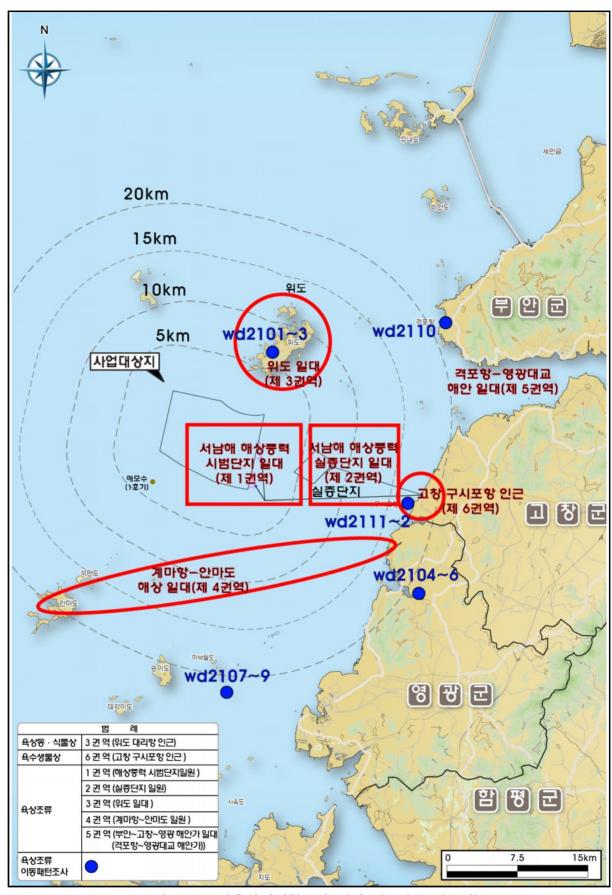


그림 5-1 사후환경영향조사 위치도(육상동·식물상)

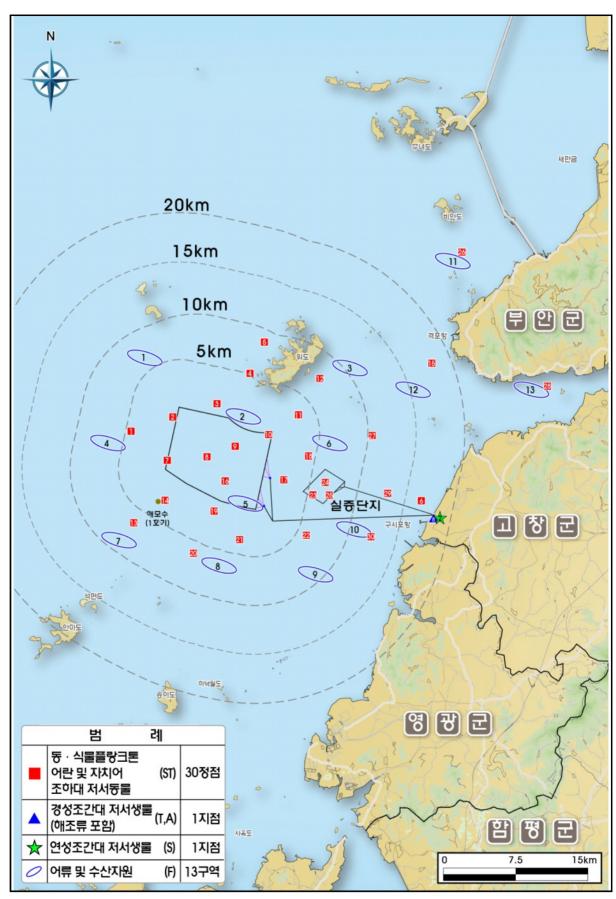


그림 5-2 사후환경영향조사 위치도(해양동·식물상)

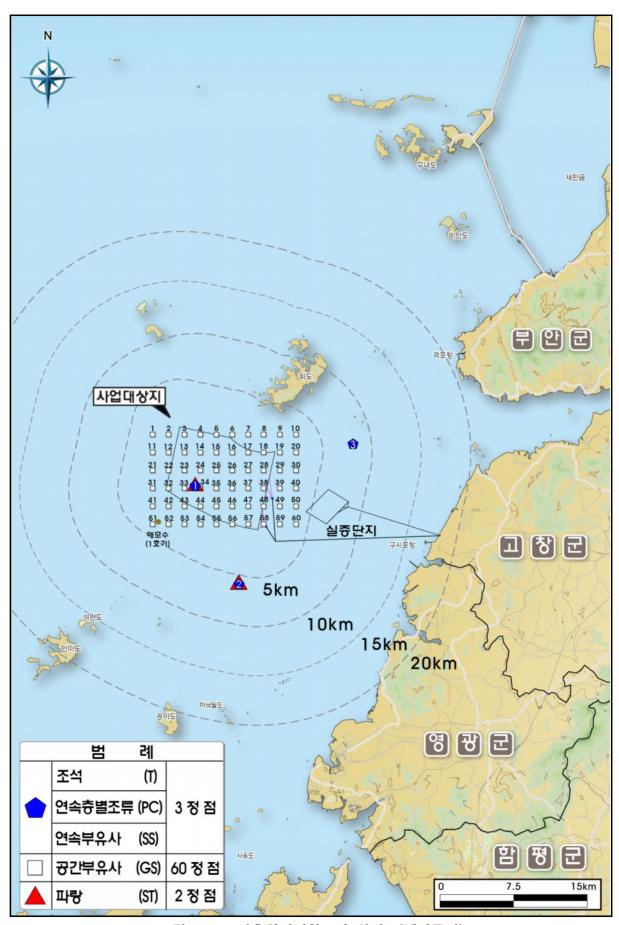


그림 5-3 사후환경영향조사 위치도(해양물리)

그림 5-4 사후환경영향조사 위치도(환경질)

※ 용어해설

가. 육상 동 식물상 관련 용어

- 군락 : 동일한 환경에 적응해서 생활하는 식물 집단
- 군집 : 어느 서식처에서 유기적 집합체를 이루어 생활하는 모든 생물 개체군
- 귀화식물 : 인간의 매개에 의하여 자생지로부터 타지역으로 이동하여 그곳에서 자력으로 생활하는 식물
- 상관(Physiology) : 식생도 작성시 지형도상에 눈으로 각 군락의 위치를 기록하는 방법
- 생태계: 생물의 군집(식물군집과 동물군집) 및 그것을 둘러싼 자연계의 물리적화학적 환경요
 소의 종합적인 물질계
- 식생(vegetation) : 식생은 식물공동체라고 표현되기도 하며, 어떤 크기나 단위를 한정 하거나 또는 한자 뜻 그대로 식물이 살아있는 생태를 말하는 것은 아니며, 어디까 지나 일정공간에 나있는 식물의 집단을 가르키는 말
- 식피(Coverage) : 지면을 덮고 있는 식물의 정도(%)
- 우점도(優占度, dominance) : 전체종의 개체수와 특정종의 개체수 조합의 정도를 나타낸 지수
- 우점종 : 동·식물에서 하나 또는 몇몇 종이 중요도가 높을 때 이들을 우점종이라 함
- 종다양도(Diversity Index, H') : 군집의 종 풍부정도와 개체수의 상대적 균형성을 의미하며 군 집의 복잡성을 나타냄
- 식재림 : 자연상태가 아닌 인위적인 방법으로 심은 나무
- 종풍부도(Richness Index, RI) : 총 개체수와 총 종수만을 가지고 군집의 상태를 표현하는 지수로서 지수값이 높을수록 종의 구성이 풍부하게 되므로 환경의 정도가 양호하다는 것을 전제로 하고 있음
- 피도(被度, coverage) : 식물의 지상부가 지표면을 덮고 있는 비율
- 현존량 : 식물이 초식동물에게 먹히고 남은 양(단위 : ton)
- 현존식생(現存植生) : 자연조건에 적응한 구조와 종조성을 갖는 자연군락
- 현존식생도 : 현재 식생의 분포를 지도상에 표시한 것

나. 해양 동 식물상 관련 용어

- 조간대 : 해안에서 조석에 의해 주기적으로 대기 중에 노출과 침수를 반복하는 지역
- 조하대: 조석에 상관없이 항상 해수가 있는 지역. 상부 천해대라고도 하는 지역으로조간대의 최하부에서 시작하며 천해대 중에서 가장 상부 지역으로 대기의 기후와 파도 등의 영향을 많이 받는 얕은 곳을 말함
- 저서생물 : 육수나 해양의 밑바닥 암반, 모래, 뻘 등의 지질에 사는 생물의 총칭
- 식물플랑크톤 : 수중생태계에서 부유생활을 하는 단세포 또는 다세포의 식물체, 식물플랑크톤
 은 대부분 녹조식물문·유글레나식물문·황갈조식물문·황적조식물문에 속하며, 드물게 갈조식물문이나 홍조식물문에 속하는 것도 있음

- 동물플랑크톤 : 수중생태계에서 부유생활을 하는 동물체
- 자치어 : 어린 물고기
- 생체량 : 생물체의 무게로 표본에서 물기를 제거한 뒤 소수 셋째자리까지 측정한 습중량
- 균등도 지수 : 종의 상대적인 풍부성과 우점도의 정도를 나타낸 지수로서, 종간의 개체가 분포 하는 방식으로 샘플에서 모든 종이 균등하게 출현했다면 균등도 지수는 최대가 됨
- 다모류: 환형동물중의 한 강(綱)을 이루는 동물로 몸은 길고 연충모양이고 몸의 횡단면은 원형 또는 편평하고 환절구분은 외견상 명확하고 등체절이 분화하여 부등체절이 되어 머리와 몸통, 또는 머리, 가슴, 배 부분으로 분화되어 있음
- 갑각류 : 절지동물문의한강(綱)으로보통2쌍의안테나와딱딱한껍질을가지고수서아가미호흡을함
- 규조류 : 단세포 조류의 강(綱). 일반적으로 말이라고 함, 엽록소와 카로티노이드 색소를 가지고 있음, 녹물 대신 류코신과 오일을 저장함. 황갈조식물에 속하는 강(綱)
- 남조류 : 식물계, 남조식물문 또는 원핵생물 상계의 모네라(Monera)계의 한 문.Cyanophyceae로 분류되는 식물군의 일반 명
- 요각류 : 해양의 동물성 플랑크톤 중 가장 많은 출현을 보이는 갑각강에 속하는 미소생물의 구성자
- 연체동물 : 머리, 발, 내장으로 구성되어 외피로 덮여 있는 몸체가 다양한 형태를 나타내는 동물군
- 환형동물 : 후생동물을의 한문으로 좌우 대칭, 열체강성의 진체강이 있는 선구동물
- 패충류 : 절지동물 갑각아문의 한 강
- 만각류 : 절지동물 갑각강의 한 아강에 속하는 동물의 총칭
- 박갑류 : 해산 연갑류의 하나이며 이매패처럼 배갑을 가지고 있음
- 만조선 : 만조 때의 바다와 땅의 경계선
- 간조선 : 간조 때 바다와 육지와의 경계선

다. 기상 관련 용어

- 기온 : 지표면에서 1.5m 높이에 있는 대기의 온도
- ∘ 풍향 : 바람이 불어오는 방향
- 풍속 : 단위시간당 이동하는 공기의 속도
- 상대습도 : 공기의 습하고 건조한 정도를 백분율로 나타낸 것
- ∘ 강수량 : 지표면에 떨어진 강수의 양으로서 비, 눈, 우박 등을 포함한 양
- 일조시간 : 태양광선이 구름이나 안개 등에 의해서 차단되지 않고 지표면을 비춘 시간
- 대기안정도 : 대기가 원래의 역학적 평형상태로 돌아가려고 하거나, 대기의 상태가 크게 변하는정도를 나타낸 것
- 현상일수 : 어느 기간중의 특정한 대기현상을 관측한 일수
- 기상특보 : 각종 기상 현상으로 인해 재해 발생의 우려가 있을 때 이를 경고하기 위해 발표하는 기상예보

라. 수질 관련 용어

- · 생물화학적산소요구량(BOD) : 수중의 유기물이 호기성 미생물에 의해 분해될때 소비되는 산소량
- ∘ 부유물질(SS) : 수중에 부유되는 용해되지 않는 물질을 말하며 탁도를 유발함
- 유출계수 : 어느 지역의 유출량을 그 지역에 내린 강수량으로 나눈 값
- 강우강도 : 단위 시간당 강우량을 측정한 것
- 오수 : 액체성 또는 고체성의 더러운 물질이 섞여 있는 상태의 물

마. 소음 관련 용어

- · 등가소음도(Leq) : 변동이 심한 소음의 평가 방법으로 소음에너지를 시간적으로 평균하여 이를 대수변환하여 10을 곱한 값으로 정의
- 소음원 : 소음을 발생하는 기계·기구, 시설 및 기타 물체를 말함
- 배경소음 : 한 장소에 있어서의 특정의 음을 대상으로 생각할 경우 대상소음이 없을 때 그 장소의 소음을 대상소음에 대한 배경소음
- 소음도 : 소음계의 청감보정회로를 통하여 측정한 지시치
- 주파수 : 1초 동안 매질의 한 점을 지나가는 마루나 골의 횟수
- 청감보정 : 인간의 청각 주파수 특성을 반영시킨 형태로 음압레벨을 측정·평가하기 위해 사용되는 주파수 하중특성에서 보정하는 것
- 역치 : 생물이 외부환경의 변화, 즉 자극에 대해 어떤 반응을 일으키는 데 필요한 최소한의 자극
- ∘ 음압 : 매질 속을 지나는 음파에 의해 생기는 압력
- 마이크로폰 : 음의 진동인 소리에너지를 전기에너지인 전류로 변환시키는 장치
- 소음감쇠량(TL) : 어떤 크기의 소음이 시간, 거리, 차폐물의 유무 등의 변화에 따라 작아졌을 때 그 감쇠의 크기를 dB로 나타낸 양
- dB(deciBel) : 음의 크기(Loudness)는 공기의 진동에 의해서 발생한 음파 진폭의 크고 작음에 의해서 결정됨. 진폭이 클수록 음은 크게 들리고, 진폭이 작을수록 작세 들림. 그러나 인간이 느끼는 음의 크고 작음은 청각으로 지각할 수 있는 감각량이므로 물리적인 음의 크기와는 다름. 이러한 이유 때문에 인간이 감각적으로 느끼는 음의 크기를 음량 물리적으로 측정한 음의 크기를 음압(Logarithm)이라고 부르고 있음. 그러나 인간이 청감으로 느끼는 음의 크기와 전기적으로 측정한 음압은 전혀 다름. 따라서 음의 크기를 인간의 청감과 일치하는 측정단위로 표현할 필요가 있음. 이것을 dB(Decibel)이라고 함, 즉,dB은 두 음에 대한 물리적인 강약을 대수(Logarithm)로 나타낸 비교값으로써 두 신호의음의 강도 또는 전력레벨 차 (비율)를 다음과 같이 매우 효율적으로 표현할 수 있음

바. 해양환경(해양물리) 관련 용어

- 수심기준면(datum level, D.L): 해도에 수심을 표시하는 기준면으로 우리나라의 수심기준면은 약최저저조면(LLW)으로 규정, 주로 해안 및 항만공사시 사용하며 약최저저조면을 0으로 함.E.L(Elevation Level)과 다르게 해안의 조석에 따라 결정되므로 위치에 따라 달라짐.
- 조석 : 달과 태양의 만유인력에 의한 해수면의 주기적인 승강운동을 말함
- 창조 : 해면이 상승하는 동안, 즉 저조에서 고조로 되는 시간을 의미하며 들물 이라고도 함
- 낙조 : 해면이 하강하는 동안, 즉 고조에서 저조로 되는 시간을 의미하며 썰물 이라고도 함
- 조차 : 고조면과 저조면의 수직거리를 말함
- 반일주조, 일주조 : 조석의 주기가 약 반일의 주기와 약 1일의 주기로 나타나는 조석을 말하 며, 장소에 따라 1/2일 주기가 우세한 곳과 1일 주기가 우세한 곳이 있음
- 평균해면 : 1일 1개월 또는 1년의 해면 평균높이를 말함
- 조석의 조화분석 : 각 천체와 지구상의 각 지점과의 상대적 위치에 따라 기조력이 변화하기 때문에 실제 달과 태양대신 천구의 적도상 일정한 거리와 주기를 유지하며 운행하는 가상천구를 생각하여 이것에 의한 규칙으로 일정한 조석이 일어난다고 생각하고 규칙성이 있는 조석들로 분해하는 것을 말함
- 조화상수 : 각 분조(tidal constituent)들의 진폭(amplitude)과 지각(phase lag)으로 구성되어있음
- ∘ 비조화상수 : 조석관측으로부터 통계에 의하여 구할 수 있는 상수를 말함
- 반조차 : 고조와 저조 사이의 높이 차이의 반을 말함
- ∘ 분조 : 조석을 조석이나 조류운동을 일으키는 힘과 동일한 진동수를 가진 사인파가 겹친 것이라고 생각 할 때 조석을 구성하는 개개의 주기변동을 분조라고 함
- M2(주태음반일주조) : 달이 적도상을 지구에서 일정한 거리를 유지하며 평균속도로 운행한다고 가정 하였을 때 생기는 분조이며, 주기는 12.42시간임
- ∘ S2(주태양반일주조) : 태양이 적도상을 지구에서 일정한 거리를 유지하며 평균속도로 운행한다고 가정 하였을 때 생기는 분조이며, 주기는 12시간임
- K1(일월합성일주조): 달과 태양이 적도 상을 운행하지 않기 때문에 생기는 분조이며, 주기는
 23.93시간임
- ∘ O1(주태음일주조): 달이 적도상을 운행하지 않기 때문에 생기는 분조이며, 주기는 25.82시간임
- 파랑: 바람에 의해 생긴 수면상의 풍랑(風浪)과 풍랑이 다른 해역까지 진행하면서 감쇠하여생긴 너울을 말함
- 파고 : 파의 골에서 마루까지의 높이를 말함
- 파향 : 물결이 움직여 가는 방향임

- 유의파 : 불규칙한 해면을 일정의 기준으로서 처리하기 위해 도입된 일종의 통계량으로, 관측된 총 파고 중 1/3의 높이를 말함
- 조류 : 조석현상에 따라 바닷물이 수평으로 운동하는데 이를 조류라고 함
- ∘ 창조류 : 저조에서 고조로 해면이 상승할 때 흐르는 조류를 창조류라 함. 그리고 최강창조류는 창조류에서 가장 빠른 유속을, 최소창조류는 창조류에서 가장 느린 유속을가진 조류를 말함
- 낙조류 : 고조에서 저조로 해면이 낮아질 때. 해안이나 하구로부터 멀어지면서 흐르는 조류
- 조류타원 : 시간에 따라 변하는 조류 벡터의 끝 점들을 이은 곡선을 말함
- 해류 : 해양에서 일정한 방향으로 일정 기간 동안 지속적으로 흐르는 흐름
- 시계열 : 어떤 관측치의 변화를 시간의 변화에 따라 측정하고 이것을 시간에 따라 계열화한 것
- 잔차류 : 조석파가 해안선과 해저지형이 복잡한 해역으로 진입하게 되면서 변형된 형태가 되게 되는데 조석 한주기 동안을 시간 적분하게 되면 잔류하는 흐름이 생기게 되는 것
- 진폭 : 전체 진동 폭의 반을 말함. 한 예로서 파도의 파저와 파봉의 높이를 파고라고 하는데
 파고의 반을 진폭이라고 함

사, 지형 지질 관련 용어

- N값 : 표준관입시험에서 타격횟수를 표준관입 시험치로 하고 이것을 N값이라고 하고,스풀릿 스푼 샘플러(split spoon sampler)를 지반에다 30cm 관입하는데 소요된 타격횟수(N)의 값으로 지반의 밀도를 측정
- · 시추조사 NX와 BX : NX와 BX는 시추구경에 따른 국제규격 분류로서 NX size의 공경은76mm(코아직경 54.7mm), BX size의 외경은 60mm(코아직경
42mm)